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Your PRINTED name is:

Please circle your recitation:

1 T 9 2-132 Andrey Grinshpun 2-349 3-7578 agrinshp

2 T 10 2-132 Rosalie Belanger-Rioux 2-331 3-5029 robr

3 T 10 2-146 Andrey Grinshpun 2-349 3-7578 agrinshp

4 T 11 2-132 Rosalie Belanger-Rioux 2-331 3-5029 robr

5 T 12 2-132 Geo�roy Horel 2-490 3-4094 ghorel

6 T 1 2-132 Tiankai Liu 2-491 3-4091 tiankai

7 T 2 2-132 Tiankai Liu 2-491 3-4091 tiankai



1 (16 pts.)

a) (4 pts.) Suppose C is n × n and positive de�nite. If A is n ×m and M = ATCA is not

positive de�nite, �nd the smallest eigenvalue of M. (Explain brie�y.)

Solution. The smallest eigenvalue of M is 0.

The problem only asks for brief explanations, but to help students understand the material

better, I will give lengthy ones.

First of all, note that MT = ATCTA = ATCA = M , so M is symmetric. That implies that

all the eigenvalues of M are real. (Otherwise, the question wouldn't even make sense; what

would the �smallest� of a set of complex numbers mean?)

Since we are assuming that M is not positive de�nite, at least one of its eigenvalues must

be nonpositive. So, to solve the problem, we just have to explain why M cannot have any

negative eigenvalues. The explanation is that M is positive semide�nite. That's the

buzzword we were looking for.

Why is M positive semide�nite? Well, note that, since C is positive de�nite, we know that

for every vector y in Rn

yTCy > 0,

with equality if and only if y is the zero vector. Then, for any vector x in Rm, we may set

y = Ax, and see that

xTMx = xTATCAx = (Ax)TC(Ax) > 0. (*)

Since M is symmetric, the fact that xTMx is always non-negative means that M is positive

semide�nite. Such a matrix never has negative eigenvalues. Why? Well, if M did have a

negative eigenvalue, say λ < 0, with a corresponding eigenvector v 6= 0, then

vTMv = vT (λv) = λvTv = λ‖v‖2 < 0,

which would contradict (∗) above, which is supposed to hold for every x in Rm.
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Remark: Some students wrote that M is similar to C, but this is totally false. In the given

problem, if m 6= n, then M and C don't even have the same dimensions, so they cannot

possibly be similar. (Remember that two n× n matrices A and B are similar if there is an

invertible n × n matrix M such that A = M−1BM , which isn't usually the same thing as

MTBM , unless M is an orthogonal matrix.)

b) (12 pts.) If A is symmetric, which of these four matrices are necessarily positive de�nite?

A3, (A2 + I)−1, A+ I, eA. (Explain brie�y.)

Solution. The answer is that (A2 + I)−1 and eA have to be positive de�nite, but A3 and

A+ I don't.

The key is to use the QΛQ−1 factorization. Let me remind you what that is. Since A

is symmetric, there is an orthonormal basis of Rn (if A is an n × n matrix) consisting of

eigenvectors q1, q2, . . . , qn of A, and the corresponding eigenvalues λ1, λ2, . . . , λn are all real.

Form an n× n matrix Q whose columns are these n eigenvectors q1, q2, . . . , qn, and let Λ be

a diagonal n× n matrix whose diagonal entries λ1, λ2, . . . , λn, so that A = QΛQ−1. (In case

you're wondering, it would also be correct to write A = QΛQT . Since Q is an orthogonal

matrix, Q−1 = QT .)

Note that all four matrices we are asked to discuss are symmetric. So the question of positive

de�niteness is just a question about the positivity of their eigenvalues.

• A3 = (QΛQ−1)3 = QΛ3Q−1, so A3 is similar to Λ3, and these two matrices have

the same eigenvalues. But Λ3 is just the diagonal matrix whose diagonal entries are

λ1
3, λ2

3, . . . , λn
3. Do these numbers all have to be positive? Of course not. For

example, we could have A = Λ = 0, the zero matrix. Then A3 = Λ3 = 0, which isn't

positive de�nite.
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• Before we discuss (A2 +I)−1, let's check that this actually makes sense, i.e., that A2 +I

is really invertible. Well,

A2 + I = (QΛQ−1)2 + I = Q(Λ2 + I)Q−1.

Now Λ2 + I is a diagonal matrix whose diagonal entries λ1
2 + 1, λ2

2 + 1, . . . , λn
2 + 1

are all nonzero, so Λ2 + I really is invertible. Then A2 + I, which is similar to Λ2 + I,

must also be invertible, and in fact we can write down its inverse:

(A2 + I)−1 = Q(Λ2 + 1)−1Q−1.

Now (A2 + I)−1 is similar to (Λ2 + 1)−1, and these two matrices have the same

eigenvalues, namely (λ1
2 + 1)−1, (λ2

2 + 1)−1, . . . , (λn
2 + 1)−1. These eigenvalues are

all positive, because (λ2 + 1)−1 > 0 for any real number λ. So (A2 + I)−1 is positive

de�nite.

• A+ I = Q(Λ + I)Q−1, so A+ I is similar to Λ + I, and these two matrices have the

same eigenvalues, namely λ1 + 1, λ2 + 1, . . . , λn + 1. Do these numbers all have to be

positive? Of course not. For example, we could have A = −I. Then A+ I = 0, which

isn't positive de�nite.

• Finally, we have eA. Note that

eA = eQΛQ−1

=
∞∑
k=0

1

k!
(QΛQ−1)k =

∞∑
k=0

1

k!
QΛkQ−1 = Q

(
∞∑
k=0

1

k!
Λk

)
Q−1 = QeΛQ−1,

so eA is similar to eΛ. But eΛ is just the diagonal matrix with diagonal entries

eλ1 , eλ2 , . . . , eλn , which are all positive, because eλ > 0 for all real λ. So the eigenvalues

of eA are all positive, and eA must be positive de�nite.

You see, diagonalization allows us to reduce a problem about matrices to a problem about

real numbers. The general philosophy is this: If A is similar to a diagonal matrix to Λ, then

often some expression1 in A is similar to the same expression in Λ, and the expression in

1Here I mean a polynomial (e.g., A3 or A + I; think of I as being akin to the constant 1), a rational

function (e.g., (A2 + I)−1), or a convergent power series (e.g., eA) in the variable A alone. We do not allow

expressions involving AT in addition to A, or anything more complicated than that.
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Λ can be computed just by plugging in the diagonal entries one by one. So the question

basically comes to this: which of the functions λ3, (λ2 +1)−1, λ+1, eλ is everywhere positive

(i.e., positive for all real λ)? Of course, your solution should explain why it comes to this.

Remarks: (i) Some students thought that A must itself be positive de�nite. Some even

wrote a �proof� that all symmetric matrices are positive de�nite! Please disabuse yourself

of this notion. Positive de�nite matrices (at least the ones with real entries) are required

to be symmetric, but there are lots of symmetric matrices that aren't positive de�nite: for

example, 0 and −I. (ii) Some students discussed only the matrices that are necessarily

positive de�nite, and didn't write anything at all about A3 and I +A. A complete solution

should convince people that it is correct. And in order to convince people that �(A2 + I)−1

and eA� is the correct answer, one should explain both why these two matrices are necessarily

positive de�nite, and why the other two aren't.
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2 (30 pts.)

Let A =


0 1 1

0 0 1

0 0 0

 .

a) (6 pts.) What are the eigenvalues of A ? (Explain brie�y.)

This matrix is upper triangular. For such a matrix, the determinant is the product of the

diagonal entries. Using this observation, if we try to compute |A − xI|, we �nd −x3. This

implies that the only eigenvalue is 0 with multiplicity 3.

b) (6 pts.) What is the rank of A?

It is clear that the last two columns of A are pivot columns. Therefore, the rank is 2.

c) (6 pts.) What are the singular values of A?

The singular values of A are the square roots of the eigenvalues of ATA.

ATA =


0 0 0

0 1 1

0 1 2


We have |xI − ATA| = x((x− 1)(x− 2)− 1) = x(x2 − 3x+ 1)

The roots are 0, 3+
√

5
2

, 3−
√

5
2

. Therefore, the singular values of A are 0,
√

3+
√

5
2

and
√

3−
√

5
2

.
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d) (6 pts.) What is the Jordan form of A? (Explain brie�y.)

In general, the Jordan form has zeroes everywhere except on the diagonal where you put the

eigenvalues on the second diagonal where you have 1 and 0. Note that the matrix A as it is

is not in Jordan normal form because you have a 1 in the upper right corner. There are 3

possibilities for what the Jordan form can be. One with two ones over the diagonal and two

with one one and one zero. To determine which is the actual Jordan form, you can look at

the rank. We know that A has rank 2 and the Jordan form is similar to A so it must have

rank 2 as well. Therefore, the only possibility is :
0 1 0

0 0 1

0 0 0



e) (6 pts.) Compute in simplest form etA.

We can use the series expression for etA. In general this is an in�nite sum which is unpleasant

but in this particular case, the powers of A quickly become zero. Indeed, we have :

A2 =


0 0 1

0 0 0

0 0 0



A3 = 0

Therefore, we have :

etA = I + tA+
t2

2
A2 =


1 t t+ t2/2

0 1 t

0 0 1


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3 (28 pts.)

We are told that A is 2×2, symmetric, and Markov and one of the real eigenvalues is y with

−1 < y < 1.

a) (7 pts.) What is this matrix A in terms of y?

We have a symmetric matrix, hence A =

 a b

b c

. Also, it is Markov, so we want a+b = 1

and b+ c = 1, with all entries non-negative. So a = c and we have A =

 a b

b a

.

Now, we want the eigenvalues of this matrix to be y and 1 (recall that Markow matrices

ALWAYS have 1 as an eigenvalue, with the all-ones vector as the corresponding eigenvector).

But we know the eigenvalues of A satisfy det(A−λI) = 0, or (a−λ)2−b2 = 0 or a−λ = ±b.

So λ1 = a + b = 1 and λ2 = a − b = y (since b ≥ 0). Using a + b = 1 into a − b = y we

get 2a − 1 = y or a = (y + 1)/2, and then b = 1 − a = (1 − y)/2. So we have found our

symmetric Markov matrix with eigenvalues 1 and y: A =

 (1 + y)/2 (1− y)/2

(1− y)/2 (1 + y)/2

.

b) (7 pts.) Compute the eigenvectors of A.

An easy way to �nd the eigenvector corresponding to the eigenvalue 1 is to recall we have

a symmetric Markov matrix, so columns add to 1 but rows too, hence the constant vector

will be an eigenvector. So for λ1 = 1 we have v1 = (1/2 1/2)T . And for λ2 = y, we �nd

a vector in the nullspace of A − yI =

 (1− y)/2 (1− y)/2

(1− y)/2 (1− y)/2

. This is easy, we �nd

v2 = (1/2 − 1/2)T .
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c) (7 pts.) What is A2012 in simplest form?

We have now diagonalized A: A = SΛS−1, where columns of S are the eigenvectors and Λ

is a diagonal matrix with 1 and y. So we have

A2012 =

 1/2 1/2

1/2 −1/2

 1 0

0 y

2012

1

−1/2

 −1/2 −1/2

−1/2 1/2


so that

A2012 =

 (1 + y2012)/2 (1− y2012)/2

(1− y2012)/2 (1 + y2012)/2


d) (7 pts.) What is limn→∞A

n in simplest form? (Explain Brie�y.)

From the above, and the fact that −1 < y < 1, we can see clearly that

lim
n→∞

An =

 1/2 1/2

1/2 1/2

 .

Another way to reason: we know the steady-state is the eigenvector of the dominating

eigenvalue, in this case λ1 = 1 and so v1 = (1/2 1/2)T . But we are asking for the matrix

which will give us this steady-state, no matter what probability vector we start with. And

so its column space has to be along the line of v1, and no bigger. But there is only one vector

proportional to v1 which could also be a column of a Markov matrix, i.e. whose entries sum

to 1. So both columns of the answer have to be v1. (You could also use the fact that the

answer should be symmetric too.)
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4 (26 pts.)

a) (5 pts.) P is a three by three permutation matrix. List all the possible values of a singular

value. (Explain brie�y.)

A permutation matrix satis�es P TP = I which has all ones as eigenvalues, so all the singular

values of P are
√

1 = 1.

b) (9 pts.) P is a three by three permutation matrix. List all the possible values of an

eigenvalue. (Explain brie�y.)

We will do part (c) �rst.

c) (12 pts.) There are six 3 × 3 permutation matrices. Which are similar to each other?

(Explain brie�y.)

Let's list the six matrices. There is the identity matrix:


1 0 0

0 1 0

0 0 1

 .

There are the three transposition matrices:


0 1 0

1 0 0

0 0 1

 ,


1 0 0

0 0 1

0 1 0

 ,


0 0 1

0 1 0

1 0 0

 .

There are the two three-cycles:
0 0 1

1 0 0

0 1 0

 ,


0 1 0

0 0 1

1 0 0

 .

If two matrices have di�erent traces, then they must have di�erent eigenvalues and so are

not similar. The trace of the identity is 3, the trace of the transpositions is 1, and the trace

of the three cycles is 0.
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We �rst show that all of the transpositions are similar to each other. Every permutation

matrix P satis�es

P


1

1

1

 =


1

1

1


so they all have eigenvalue λ1 = 1. Note that each of the transposition matrices has a �xed

point and so has a standard basis vector as an eigenvector with eigenvalue λ2 = 1. For

example, 
0 1 0

1 0 0

0 0 1




0

0

1

 =


0

0

1

 .

Since they all have trace 1, their �nal eigenvalue λ3 must be −1 so that λ1 + λ2 + λ3 = 1.

Thus we have shown that the transposition matrices all have the eigenvalue 1 repeated twice

with two linearly independent eigenvectors as well as the eigenvalue −1. Therefore, they are

similar as each of their Jordan canonical forms must be
1 0 0

0 1 0

0 0 −1

 .

Finally, we show the two three-cycles are similar to each other. As before, they have eigen-

value λ1 = 1 corresponding to the all ones vector. Their other two eigenvalues must satisfy

λ1 + λ2 + λ3 = 0. Then λ2 + λ3 = −1. However, we must have that |λ2| = |λ3| = 1 since the

permutation matrices are orthonormal. Note that if λ2, λ3 were real then they must each be

1 or −1 and it is impossible to have λ2 + λ3 = −1. Therefore, they are complex and must

satisfy λ2 = λ3. Then their real parts are the same and must add to −1, so they each have

real part −1/2. Using that |λ2| = |λ3| = 1, we get that one of λ2, λ3 must be 1/2+i
√

3/2 and

the other must be 1/2− i
√

3/2. Therefore, the three cycles both have the same eigenvalues,

namely the three di�erent cubed roots of 1 in the complex plane, and so are similar.

Returning to part (b) of the problem, we have shown that the possible eigenvalues are the

square roots of 1 and the cubed roots of 1.
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